
• Tiny, causal speech enhancement (SE) models are crucial for embedded 
applications (e.g.. hearables) [1].

• Knowledge distillation (KD) can reduce the size of larger models while 
maintaining performance [2]. 

• KD has not been extensively explored in the context of tiny causal SE 
models (<100k params.) [3,4,5].

Motivation

• Convolutional Recurrent U-Net for SE (CRUSE) [6] topology – performant 
and compact causal SE model.

• Input: Mel spectrogram(32/16 ms frame/hop size).

• Output: Real mask applied to the noisy STFT input.

• The same architecture for teacher (T) and student (S) models, with 
different numbers of latent channels.

• T: 1.9M params., 13.34 MOps/frame (pre-trained)

• S: 0.062M params., 0.84 MOps/frame (3.3/6.3% of T)

+ ablations of S size (0.03 – 0.35M params.)

• Dataset: MS-DNS 2020 [7] - default train/test split

• Supervised loss: phase-sensitive spectrum approx. (PSA)

• Metrics: Signal-to-Distortion Ratio (SDR), Perceptual Evaluation of Speech 
Quality (PESQ), Extended Short-Term Objective Intelligibility (eSTOI), DNS-
MOS [7].

Model setup for KD
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Weighted KD/supervised loss (wKD) uses 𝛄  to control the ratio of 
KD and supervision in the total student loss:

Two-step Knowledge Distillation

1-step KD: use a weighted mix of KD loss and 
supervised loss (wKD)

2-step KD – split the training into two stages 
(inspired by [8]) 

• Step 1: use only KD loss in the initial pre-
training (100 epochs)

• Step 2: use wKD or supervised PSA loss (400 
epochs)

• Proposed Gtf matrix providing more granular self-similarity representation 
yield improvements in 1-step KD.

• 2-step KD involving Gtf local distillation pre-training followed by fully 
supervised provides the best performance for the tested tiny, causal SE 
models.

• Our KD approach provides the largest consistent benefits for the smallest 
student model size (as small as ~30k params) and for the lowest SNRs.

• Further work should explore combining the method with pruning and/or 
quantization and applying it to other audio-to-audio problems.
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Results: 2-step KD

Best approach: local KD Gtf pre-training followed by 
supervised (PSA) training.

Results: 1-step KD

• Standard KD using teacher output [3] doesn’t affect 
the performance

• Using Gtf for the latent local KD provides the largest 
improvements.
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Latent representation self-similarity for Knowledge Distillation
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Latent representation of teacher/student models can’t 
be directly compared due to the feature size mismatch. 

Compute activation across batch items for each model 
to obtain self-similarity G.

Local KD: Compare G for corresponding 
teacher/student blocks.

Flow KD: Compute G across blocks and compare them 
between teacher/student.
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