

### Motivation

- Tiny, causal speech enhancement (SE) models are crucial for embedded applications (e.g., hearables) [1].
- Knowledge distillation (KD) can reduce the size of larger models while maintaining performance [2].
- **KD** has not been extensively explored in the context of tiny causal **SE** models (<100k params.) [3,4,5].

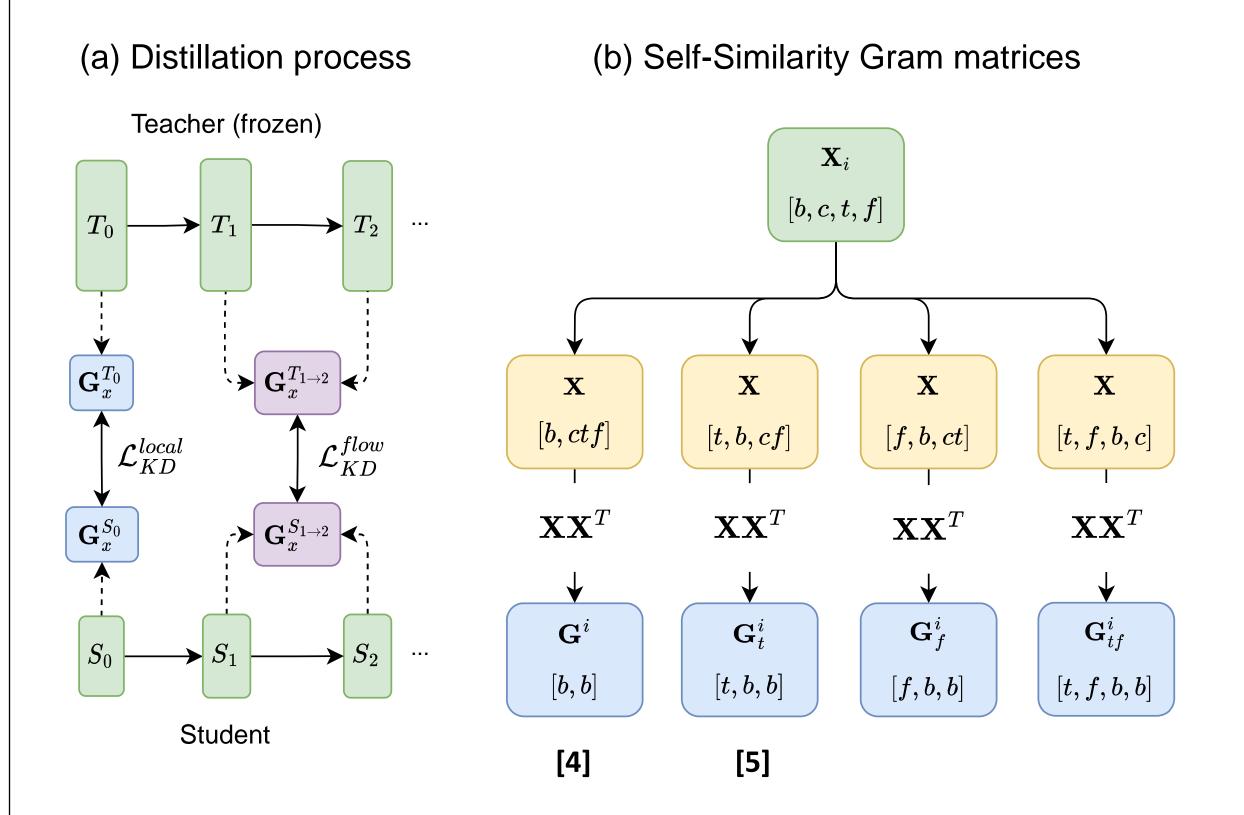
### Model setup for KD

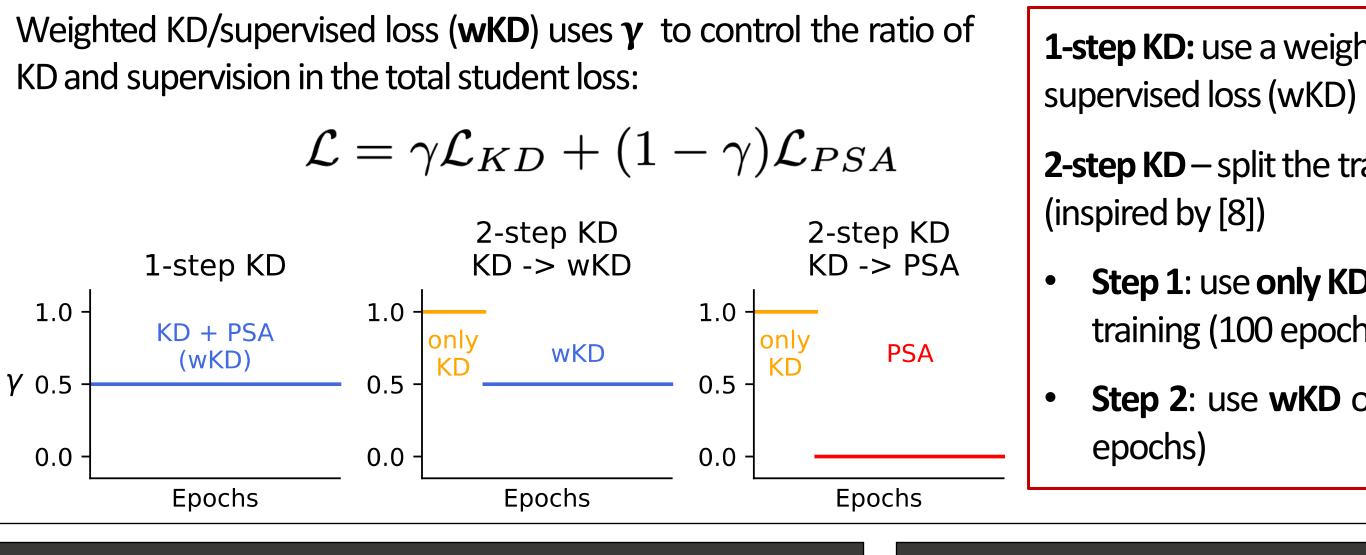
- **Convolutional Recurrent U-Net for SE (CRUSE)** [6] topology performant and compact causal SE model.
  - Input: Mel spectrogram(32/16 ms frame/hop size).
  - **Output:** Real mask applied to the noisy STFT input.
- The same architecture for teacher (T) and student (S) models, with different numbers of latent channels.
  - T: 1.9M params., 13.34 MOps/frame (pre-trained)
  - **S**: 0.062M params., 0.84 MOps/frame (3.3/6.3% of T)
  - + ablations of **S** size (0.03 0.35M params.)
- **Dataset:** MS-DNS 2020 [7] default train/test split
- Supervised loss: phase-sensitive spectrum approx. (PSA)
- **Metrics:** Signal-to-Distortion Ratio (**SDR**), Perceptual Evaluation of Speech Quality (PESQ), Extended Short-Term Objective Intelligibility (eSTOI), DNS-**MOS** [7].

### Conclusions

- Proposed **G<sub>ff</sub>** matrix providing more granular self-similarity representation yield improvements in 1-step KD.
- 2-step KD involving G<sub>tf</sub> local distillation pre-training followed by fully supervised provides the best performance for the tested tiny, causal SE models.
- Our KD approach provides the largest consistent benefits for the smallest student model size (as small as ~30k params) and for the lowest SNRs.
- Further work should explore combining the method with pruning and/or quantization and applying it to other audio-to-audio problems.

### References


[1] Fedorov et al., "TinyLSTMs: Efficient neural speech enhancement for hearing aids.", Interspeech 2020 [2] Hinton et al., "Distilling the knowledge in a neural network.", NeurIPS 2015 [3] Nakaoka et al., "Teacher-student learning for low-latency online speech enhancement using wave-u-net.", ICASSP 2021 [4] Tung and Mori, "Similarity-preserving knowledge distillation.", CVPR 2019 [5] Cheng, et al., "Cross-Layer Similarity Knowledge Distillation for Speech Enhancement,", Interspeech 2022 [6] Braun, et al., "Towards efficient models for real-time deep noise suppression.", ICASSP 2021 [7] Reddy et al., "The interspeech 2020 deep noise suppression challenge: Datasets, subjective testing framework, and challenge results.", Interspeech 2020 [8] Yim, et al., "A gift from knowledge distillation: Fast optimization, network minimization and transfer learning.", CVPR 2017


# **Two-Step Knowledge Distillation for Tiny Speech Enhancement**

Rayan Daod Nathoo\*, Mikolaj Kegler\*, Marko Stamenovic Bose Corporation, USA

mikolaj\_kegler@bose.com, marko\_stamenovic@bose.com

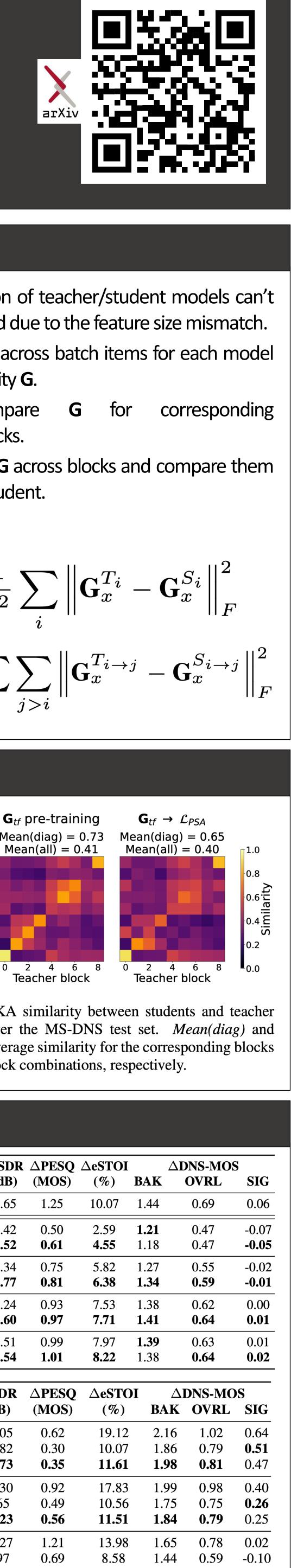
# Latent representation self-similarity for Knowledge Distillation





### **Results: 1-step KD**

**Table 1**: One-step KD for tiny SE. *Output*:  $\mathcal{L}_{KD}$  comparing teacher and student outputs (similar to [15]).  $G_x$ : Feature-based  $\mathcal{L}_{KD}$  using self-similarity matrix of type x (Fig. 1b). All models are initialized with the same random weights and use  $\gamma = 0.5$  (Eq. 3).


|                          | $\Delta$ SDR  | $\Delta \mathbf{PESQ}$ | $\Delta$ eSTOI | $\Delta$ DNS-MOS |      |       |
|--------------------------|---------------|------------------------|----------------|------------------|------|-------|
| Model                    | ( <b>dB</b> ) | (MOS)                  | (%)            | BAK              | OVRL | SIG   |
| Teacher                  | 8.65          | 1.25                   | 10.07          | 1.44             | 0.69 | 0.06  |
| Student                  | 6.34          | 0.75                   | 5.82           | 1.27             | 0.55 | -0.02 |
| Distillation             |               |                        |                |                  |      |       |
| Output [3]               | 6.35          | 0.75                   | 5.59           | 1.33             | 0.56 | -0.03 |
| <b>G</b> [4]             | 6.32          | 0.75                   | 5.70           | 1.29             | 0.56 | -0.02 |
| $\mathbf{G}_t$ [5]       | 6.50          | 0.77                   | 5.95           | 1.33             | 0.55 | -0.04 |
| $\mathbf{G}_{f}$         | 6.47          | 0.74                   | 6.03           | 1.29             | 0.56 | -0.02 |
| $\mathbf{G}_{tf}$ (ours) | 6.68          | 0.77                   | 5.99           | 1.36             | 0.57 | -0.04 |

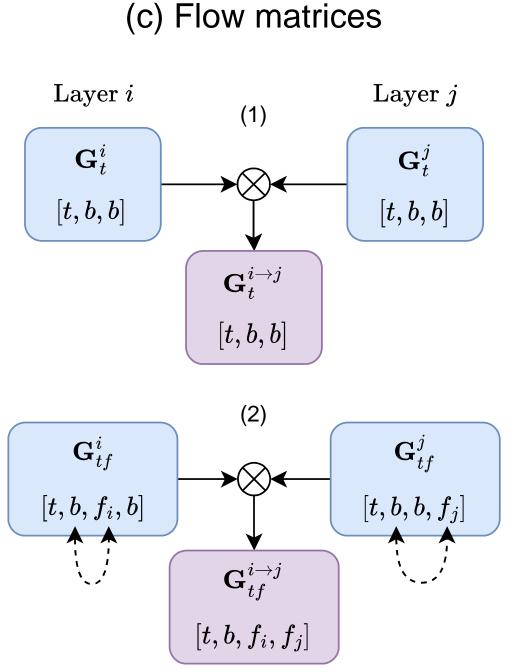

- Standard KD using teacher output [3] doesn't affect the performance
- Using G<sub>ff</sub> for the latent local KD provides the largest improvements.

 
 Table 2: Two-step KD. Step 1 - Student pre-training using only
  $\mathcal{L}_{KD}$  ( $\gamma = 1$ ) or no pre-training (None). Step 2 -  $\mathcal{L}_{PSA}$ : student training with only PSA loss ( $\gamma = 0$ ; supervised),  $\mathbf{G}_{tf}$ : Loss from Eq. 3 using  $\mathbf{G}_{tf}$ -based  $\mathcal{L}_{KD}$  and  $\gamma = 0.5$  (best from Table 1).

|                                   | 1                   | C J                                          |       | ,              | × ×              |      |       |
|-----------------------------------|---------------------|----------------------------------------------|-------|----------------|------------------|------|-------|
| Model                             |                     | $\Delta$ SDR $\Delta$ PESQ $\Delta \epsilon$ |       | $\Delta$ eSTOI | $\Delta$ DNS-MOS |      |       |
|                                   | odel                | ( <b>dB</b> )                                | (MOS) | (%)            | BAK              | OVRL | SIG   |
| Teacher<br>Student                |                     | 8.65                                         | 1.25  | 10.07          | 1.44             | 0.69 | 0.06  |
|                                   |                     | 6.34                                         | 0.75  | 5.82           | 1.27             | 0.55 | -0.02 |
| Step 1                            | Step 2              |                                              |       |                |                  |      |       |
| None                              | $\mathbf{G}_{tf}$   | 6.68                                         | 0.77  | 5.99           | 1.36             | 0.57 | -0.04 |
| $\mathbf{G}_t^{i  ightarrow j}$   | $\mathcal{L}_{PSA}$ | 6.46                                         | 0.78  | 6.07           | 1.29             | 0.56 | -0.02 |
|                                   | $\mathbf{G}_{tf}$   | 6.54                                         | 0.78  | 5.88           | 1.33             | 0.56 | -0.04 |
| $\mathbf{G}_{tf}^{i ightarrow j}$ | $\mathcal{L}_{PSA}$ | 6.54                                         | 0.79  | 5.87           | 1.33             | 0.57 | -0.02 |
|                                   | $\mathbf{G}_{tf}$   | 6.76                                         | 0.80  | 6.06           | 1.33             | 0.57 | -0.03 |
| $\mathbf{G}_{tf}$                 | $\mathcal{L}_{PSA}$ | 6.77                                         | 0.81  | 6.38           | 1.34             | 0.59 | -0.01 |
|                                   | $\mathbf{G}_{tf}$   | 6.75                                         | 0.80  | 6.34           | 1.32             | 0.57 | -0.02 |
|                                   |                     |                                              |       |                |                  |      |       |

**Best approach**: local KD G<sub>tf</sub> pre-training followed by supervised (PSA) training.



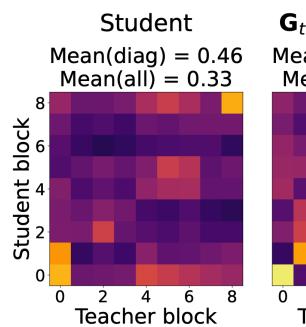


Latent representation of teacher/student models can't be directly compared due to the feature size mismatch. Compute activation across batch items for each model to obtain self-similarity **G**.

KD: Local Compare teacher/student blocks.

Flow KD: Compute G across blocks and compare them between teacher/student.

$$\mathcal{L}_{KD}^{local} = rac{1}{b^2} \sum_{i} \left\| \mathbf{G}_x^{T_i} - \mathbf{G}_x^{T_i} - \mathbf{G}_x^{T_i} - \mathbf{G}_x^{T_i} - \mathbf{G}_x^{T_i} \right\|$$


# **Two-step Knowledge Distillation**

1-step KD: use a weighted mix of KD loss and

**2-step KD** – split the training into two stages

**Step 1**: use **only KD** loss in the initial pretraining (100 epochs)

Step 2: use wKD or supervised PSA loss (400



**G**<sub>tf</sub> pre-training Mean(diag) = 0.73Mean(all) = 0.41

-0.09

0.62

Fig. 2: Block-wise CKA similarity between students and teacher networks, averaged over the MS-DNS test set. Mean(diag) and *Mean(all)* denote the average similarity for the corresponding blocks (diagonal) or all the block combinations, respectively.

## **Results: 2-step KD**

|          | D (0D)              |                                                   |                                           |                     | A 1                 |
|----------|---------------------|---------------------------------------------------|-------------------------------------------|---------------------|---------------------|
| Model    | Params / OPS<br>(M) | $\begin{array}{c} \Delta SDR \\ (dB) \end{array}$ | $\frac{\Delta \text{PESQ}}{(\text{MOS})}$ | $\Delta eSTOI $ (%) | <b>BAK</b> $\Delta$ |
| Teacher  | 1.9 / 13.34         | 8.65                                              | 1.25                                      | 10.07               | 1.44                |
| Student  | 0.03 / 0.42         | 4.42                                              | 0.50                                      | 2.59                | <b>1.21</b>         |
| Proposed |                     | <b>5.52</b>                                       | <b>0.61</b>                               | <b>4.55</b>         | 1.18                |
| Student  | 0.06 / 0.84         | 6.34                                              | 0.75                                      | 5.82                | 1.27                |
| Proposed |                     | <b>6.77</b>                                       | <b>0.81</b>                               | <b>6.38</b>         | <b>1.34</b>         |
| Student  | 0.24 / 2.48         | 7.24                                              | 0.93                                      | 7.53                | 1.38                |
| Proposed |                     | <b>7.60</b>                                       | <b>0.97</b>                               | <b>7.71</b>         | <b>1.41</b>         |
| Student  | 0.35 / 3.08         | 7.51                                              | 0.99                                      | 7.97                | <b>1.39</b>         |
| Proposed |                     | <b>7.54</b>                                       | <b>1.01</b>                               | <b>8.22</b>         | 1.38                |
| SNR (dB  | ) Model             | $\Delta$ SDR                                      | ΔPESQ                                     | ∆eSTC               |                     |
|          | ,                   | ( <b>dB</b> )                                     | (MOS)                                     | (%)                 | BAK                 |
| - 5      | Teacher             | 14.05                                             | 0.62                                      | 19.12               | 2.16                |
|          | Student             | 10.82                                             | 0.30                                      | 10.07               | 1.86                |
|          | Proposed            | <b>11.73</b>                                      | <b>0.35</b>                               | <b>11.61</b>        | <b>1.98</b>         |
| 0        | Teacher             | 12.30                                             | 0.92                                      | 17.83               | 1.99                |
|          | Student             | 9.65                                              | 0.49                                      | 10.56               | 1.75                |
|          | Proposed            | <b>10.23</b>                                      | <b>0.56</b>                               | <b>11.51</b>        | <b>1.84</b>         |
| 5        | Teacher             | 10.27                                             | 1.21                                      | 13.98               | 1.65                |
|          | Student             | 7.97                                              | 0.69                                      | 8.58                | 1.44                |
|          | Proposed            | <b>8.43</b>                                       | <b>0.76</b>                               | <b>9.32</b>         | <b>1.51</b>         |